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Abstract 

Land-cover change, a major driver of the distribution and functioning of ecosystems, is 

characterized by a high diversity of patterns of change across space and time. Thus, a large amount 

of information is necessary to analyse change and develop plans for proper management of natural 

resources. In this work we tested MaxEnt algorithm in a completely remote land-cover 

classification and change analysis. In order to provide an empirical example, we selected Italian 

southern Alps as test region. We classified two Landsat images (1976 and 2001) in order to forecast 

probability of occurrence for unsampled locations and determining the best subset of predictors 

(spectral bands).  A difference map for each land cover class, representing the difference between 

1976 and 2001 probability of occurrence values, was realised. In order to better address the analysis 

of change patterns,  we put together difference maps and topographic variables, since, in the study 

area, they are considered as the main environmental characteristic driving the land-use change 
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topographic variables, in connection with climate change. Our results indicate that the selected 

algorithm, applied to land cover classes, can provide reliable data, especially when referring to 

classes with homogeneous texture properties and surface reflectance. The performed models had 

satisfactory predictive performance, showing relatively clear patterns of difference between the two 

time steps considered. The development of a methodology that, in the absence of field data, allow to 

obtain data on land use change dynamics, is of extreme importance for land planning and 

management.  

 

Keywords: GIS, Land-cover change, Machine learning, MaxEnt, Probability distribution, Remote 

sensing. 

 

1. Introduction 

Land-cover change is considered to be the major driving force of transformation in 

ecosystem function and dynamics in many regions of the world (Gillanders, Coops, Wulder, Gergel, 

& Nelson, 2008). Land-cover change is characterized by a high diversity of patterns of change 

across space and time as a function of specific driving factors at a certain location (Mottet, Ladet, 

Coqué, & Gibon, 2006; Meyfroidt, Lambin, Erb, & Hertel, 2013; Lawler et al., 2014). A large 

amount of information is necessary to analyse land-cover change and develop plans for proper 

management of natural resources (Pelorosso, Leone, & Boccia, 2009). Traditional methods (e.g. 

field surveys, literature reviews, map interpretation and collateral and ancillary data analysis), 

however, are not effective to acquire land cover data at landscape scale, since they are time 

consuming, date lagged and often too expensive. Consequently remote sensing might represent an 

essential technology to study vegetation cover changes, especially over large areas (Green, 

Kempka, & Lackey, 1994; Stow et al. 2004; Lunetta, Knight, Ediriwickrema, Lyon, & Dorsey 

Worthy, 2006). Because of the potential for systematic observations at various scales, remote 

sensing technology extends possible data archives from present time to several decades ago (Brink 
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& Eva, 2009; Mallinis, Emmanoloudis, Giannakopoulos, Maris, & Koutsias, 2011; Fichera, 

Modica, & Pollino, 2012). For this advantage, enormous efforts have been made by researchers and 

application specialists to delineate land-cover change by applying remote sensing image time series 

(Verburg, Neumann, & Nol, 2011).  

In the remote sensing literature, several methodologies have been reported for automatic 

classification. Many of them are based on Bayesian theory as it offers a theoretically robust 

foundation for the classification of remotely sensed data (Robin, Mascle-Le Hégarat & Moisan, 

2005; Rocchini et al., 2017). MaxEnt (Phillips, Anderson, & Schapire, 2006), the current state-of-

the-art of machine-learning algorithm traditionally used in distribution modelling (Elith & Graham, 

2009; Peterson, Papes, & Eaton, 2007; Warren & Seifert, 2011), represent an appealing alternative 

to common “soft” classifiers because it can be trained with presence-only data, treating land cover 

classes the same way as a single species or habitat (Mack et al., 2016). The use of models which 

imply presence-only methods, represent a fascinating challenge since they allow for the mapping of 

uncertainty in the form of suitability maps instead of binary presence/absence (Rocchini et al., 

2015), overcoming the problems derived from a crisp view of landscapes and taking into account 

the complexity of land cover classes. 

Maxent has been used for one-class land cover classification in applied studies or to 

compare different distribution algorithms (see e.g. Li & Guo, 2010; Lin, Liu, Li & Li, 2014; 

Maclaurin & Levk, 2016; Mack & Waske, 2017), but its application in remote sensing remains rare. 

The theoretical foundation of MaxEnt consists in the maximum-entropy principle (Jaynes, 1957): 

when approximating an unknown probability distribution, the best approach is to ensure that the 

approximation satisfies any constraints on the unknown distribution that we are aware of, and that 

the distribution, the subject to those constraints, should have maximum entropy. Hence, the MaxEnt 

principle is to estimate a probability distribution by calculating the maximum entropy subject to a 

set of constraints that represent our incomplete information about the target distribution (Phillips, 

Anderson, & Schapire, 2006). Following this principle, MaxEnt, given the constraints derived from 
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the data, estimates the most uniform distribution (maximum entropy) of sampling points compared 

to background locations (Baldwin, 2009; Phillips et al., 2009). The maximum entropy algorithm is 

deterministic and will converge to the maximum entropy probability distribution (Phillips, 

Anderson, & Schapire, 2006). Therefore, the resultant output represents how much better the model 

fits the location data than would a uniform distribution (Philips & Dudik, 2008; Baldwin, 2009). 

The basic aim of this work is to disentangle the opportunities for future application of 

distribution models in multi-temporal remote sensing classification, in the absence of field data. 

Here we specifically concentrated on testing the MaxEnt algorithm in land cover classification and 

land-cover change detection. We expect  that the tested algorithm, combined with GIS-based spatial 

analysis, would allow for completely remote land-cover classification and change detection 

analysis, providing reliable data, especially when referring to land cover classes with homogeneous 

texture properties and surface reflectance (Amici, 2011). Aware that there are no classification 

algorithms that could apply universally and that classifiers may also be assumed to have 

complementary capabilities (Matsuyama, 1987), through our work we aim to propose a rapid and 

cost-effective methodological approach that can be replicated for remote sensing-based multi-

temporal classifications at landscape scale. 

 

2. Material and methods 

2.1 Spectral response-based MaxEnt classification 

In order to provide an empirical example, we decided to make use Italian Southern Alps (Trentino 

region) as a test region (Figure1), with an extremely complex landscape ranging from agricultural 

land (mainly vineyards) at lower elevations, to broadleaf and coniferous forest and grasslands at 

higher elevations (> 2000 m) (refer to Rugani and Rocchini 2016 for additional information). We 

divided the classification framework into two major steps: i) remote sensing imagery and 

occurrence data collection, and ii) model building, to forecast probability of occurrence for 

unsampled locations (Yost et al., 2008). As for the first step, an ortho-Landsat MSS image (path 
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208, row 028, acquisition date August, 1976) and an ortho Landsat ETM+ image (path 192, row 

028, acquisition date August, 2001) were acquired and converted to ASCII format for use in 

MaxEnt. In order to guarantee the comparability between the datasets in terms of spatial resolution, 

the Landsat images have been resampled at pixel resolution of 50m x 50m. Subsequently, the 

overlap area between the ETM+ and MSS images, comprising the test area identified, has been 

clipped and used in the classification procedure (model building). Then, through the overlay 

between Corine Land Cover 2000 dataset and satellite images, and the on screen photo 

interpretation of 1976 and 2001 images, we identified nine land-cover classes on the basis of the 

Corine legend (Tab.1). Subsequently, we selected 20 training pixels (where the uncertainty linked to 

visual classification was lower) for each class and for both time steps (1976-2001). In order to 

estimate the probability distribution of the land cover classes based on the spectral information 

provided by the Landsat images, we relied on MaxEnt software v.3.3 (http://www.cs. 

princeton.edu/~schapire/MaxEnt/; Last accessed on March 5, 2011), a free software package based 

on the maximum-entropy approach (Phillips, Anderson, & Schapire, 2006; Baldwin, 2009). The 

MaxEnt approach apply the principle of maximum entropy on presence-only data to relate 

environmental variables and habitat suitability in order to approximate the species’ niche and 

potential geographic distribution (Phillips, Anderson, & Schapire, 2006; Ficetola et al., 2010). In 

principle maximum entropy seeks a marginal suitability function for each variable that i) matches 

the empirical data, ii) is maximally uninformative elsewhere, and iii) has a mean equal to that from 

the empirical data (Warren & Seifert, 2011). However, strict adherence to this requirement can lead 

to models that overfit input data. For this reason, MaxEnt uses a process called L1 regularization to 

constrain modelled distributions to lie within a certain interval around the empirical mean rather 

than matching it exactly (Phillips, Anderson, & Schapire, 2006). Hence, the entropy measured by 

MaxEnt on a grid cell containing an occurrence record of a known feature, for which we want to 

estimate the distribution, is expected to be low, whereas the entropy measured on a grid cell on 

which we do not know all the ecological constraints is expected to be high (Phillips & Dudik, 
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2008). Then, MaxEnt model evaluates the suitability of each grid cell as a function of 

environmental variables and generates an estimate of probability of presence that varies from 0 to 1, 

where 0 is the lowest and 1 the highest probability. The 180 selected training points and six spectral 

layers (Landsat bands) were here used in MaxEnt to model the distribution of the nine selected 

land-cover classes. In order to assess the predictive performance of the MaxEnt models (Land cover 

distribution probabilities), the Receiver Operating Characteristic curves (ROC) have been used 

(Hanley & McNeil, 1982; Zweig & Campbell, 1993). A ROC curve is obtained by plotting 

sensitivity (true positive rate) on the y axis and 1-specificity (false positive rate) on the x-axis for all 

possible thresholds. The Area Under the ROC Curve (AUC) value indicates the model accuracy and 

was used here as a standard measure of model quality (Elith et al., 2011). For random prediction, 

AUC is 0.5. The main advantage of ROC analysis is that the AUC provides a single measure of 

model performance, independent of any particular choice of threshold. In this work a bootstrap 

replicated run has been performed to do multiple runs (100) for the same land cover class; through 

this method the training data is selected by sampling with replacement from the presence points 

(random test samples equal to 25%), with the number of samples equaling the total number of 

presence points. MaxEnt models were run on separately to produce 18 datasets of probability of 

occurrence (9 for 1976 and 9 for 2001) of each land cover type within the study area. 

 

2.2 Land-cover change analysis 

A difference map for each land cover class (representing the difference between 1976 and 2001 

probability of occurrence values), was obtained using the Raster map calculator module of GRASS 

GIS (GRASS Development Core Team, 2011; Neteler et al., 2012). Then, using GRASS GIS, was 

built a mask on pixels of each 2001 maps and, then, each mask was applied on 1976 maps, 

calculating the mean of frequency distribution of pixel values for each land use class. Thus was 

obtained a contingency matrix with average value of probability of belongings to 1976 classes for 

each of 2001 classes. In order to link land use changes and topographic variables (altitude and 
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slope), a 75m Digital Elevation Model (DEM) was acquired. Subsequently the DEM was resampled 

at a spatial resolution of 50m, in order to enable the spatial overlay analysis between land-cover 

map data (difference between 2001 and 1976 models) and topography. Afterwards a slope raster 

map was obtained through the r.slope.aspect module of GRASS GIS. In the study area, topographic 

variables, like elevation and slope, in connection with climate change, are considered as the main 

environmental characteristic driving the land-use change patterns at landscape scale (see e.g. 

Tappeiner, Tasser, & Tappeiner, 1998; Dirnbock, Dullinger, & Grabherr, 2003; Gehrig-Fasel, 

Guisan, & Zimmermann, 2007; Tasser, Walde, Tappeiner, Teutsch, & Noggler, 2007; Randin et al., 

2009). The difference maps were overlaid with the altitude and slope layers in order to analyse 

pattern of land-cover change in relation to topography. 

The spatial data relatively to the slope, altitude and difference maps for the nine land use, were 

imported in the R software (R Development Core Team, 2011) from GRASS GIS, using the 

package spgrass6. To display as best as possible both the frequency distributions of nine difference 

maps and their relationships with geomorphological variables, we used the kernel density 

estimation, the commonest way to estimate the probability density function of a random variable 

(Venables & Ripley, 2002).  We performed, on each class, a simple normal kernel estimation of 

difference values distribution, joined with the number of lost and gained pixels, to investigate the 

land use changes between 1976 and 2001. Then, to study the relationships between land use 

changes and the two considered geomorphological variables, we applied a two-dimensional kernel 

density estimation, algebraically defined how: 

 

f (x,y )=

∑ϕ((x−x s)/hx )ϕ(( y−y s)/h y )

nh
x
h

y  Eq. 1 

where x and y are the difference values and the geomorphological variable values, respectively, φ is 

the normal kernel function and h is the smoothing parameter for the two variables, called the 

bandwidth, here calculated using the rule-of-thumb indicated by Venables & Ripley 2002. Eq. 1, 
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implemented by the R function kde2d, was performed between land use classes, taken one at once, 

and one of the two environmental variables. Then, the calculated kernel distributions were drawn 

using perspective plots, built with the R function persp, implemented into the rgl package (Adler & 

Murdoch, 2011). Following this procedure, we built 18 3D-density plots between land use classes 

and geomorphological variables distributions.  

The choice to analyze the distribution of probability values of land use change with respect to 

topographic variables, not including them in the model process itself, has been dictated by the need 

to provide a further verification of the reliability of the difference models performed, by avoiding 

potential circular analysis, which is known to generally affect the ecological explanation of the 

patterns achieved from the modelling techniques (Ginzburg & Jensen, 2004).  

3. Results  

The MaxEnt classification output resulted in 18 maps showing the mean probability of occurrence 

for each land cover class for the two temporal steps. The MaxEnt model's internal test of variable 

importance showed that the MSS’ near infrared bands represent the most important layer in 

classifying the distribution of forest cover classes (coniferous forests and broadleaved forests), 

water bodies, rock and bare soil, grasslands and pastures and artificial areas, while the MSS’ green 

and red bands were the most important variables in explaining the distribution of agricultural areas 

(croplands, orchards, vineyards). Focusing on the test of variable importance for ETM+ bands, the 

middle-infrared bands resulted the most important layer in explaining the distribution of croplands, 

artificial areas, coniferous forests, water bodies and grasslands, while the near infrared band for 

orchards and broadleaves and red band for vineyards. The relative contributions of each band to 

each land cover model are reported in Table 2, showing relatively high values for the bands in the 

near infrared (1976 and 2001) and mid infrared (2001) regions of the electromagnetic spectrum 

(band 4and 5) for all models, while green and red regions showed high values for grasslands and 

vineyards models respectively in 1976.  
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The predictive quality of all models can be considered good with AUC values (average of 100 

replicate runs) ranging from 0.93 to 0.99 and a standard deviation ranging from 0.003 to 0.19 

(Tab.3). The land cover classes that have highest AUC values for both time steps considered are 

Water bodies and Artificial areas. The performed difference maps (2001-1976) allowed to evaluate 

the rate of land cover change in terms of probability of occurrence values: values equalling 0 

correspond to no change,  values greater than 0 correspond to a gain, while values less than 0 

correspond to a loss (Fig. 2). The distribution of gain, loss or maintenance values for each land 

cover map is summarized by the frequency distribution curves represented in Figure 3, relating the 

values of loss (<0), gain(>0) or maintenance (=0) for each land use class to its frequency of 

occurrence. The curves highlights that the loss of probability of occurrence (loss of surface) was 

most pronounced in the “Croplands”, “Water bodies”, “Grasslands and Pastures” and “Rock and 

bare soil” classes, while the gain of probability of occurrence (gain of surface) was more 

pronounced for “Coniferous forests”, “Broadleaved forests” and “Vineyards” classes.  

A qualitative analysis of the data (direction of change) was obtained through the cross-classification 

analysis, which, in conjunction with the results obtained with regard to the rate of change, allowed  

an overall analysis of land cover change process. Linking the contingency matrix between 1976 and 

2001 land cover models (Tab.4) to the frequency distribution curves (Fig.3), it is possible to 

highlight that the study area has been undergoing a significant increase in forest areas to the 

detriment of Croplands, Grasslands and Bare soil.  

The relationships between change processes and topography have been summarised by the 3D-

density plots between land use classes and geomorphological variables showed in figure 4 

(Elevation) and 5 (Slope). Through the 3D-density plots it is possible to highlight that the increase 

in Broadleaved forests has occurred mainly at altitudes between 600 and 1200 meters with a slope 

peak corresponding to medium-high values (20-30°), while the increase in Coniferous forest has 

occurred in higher altitudes (1000 and 2000 meters). On the other hand the major decreases of 

cropland has occurred in connection with lowest altitude values (0-200 meters), while the decrease 
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of grassland and pastures has occurred at altitudes between 1000 and 2000 meters and low slope 

values. The orchards were characterized by a slight increase at hilly altitudes and low slope values 

while the vineyards have been characterized by a slight loss with low slope values. 

 

4. Discussion 

In this paper, we applied a distribution model to land cover classes instead of species or habitats, 

presenting a novel approach in this framework and extending along the methods to multi-temporal 

data, which implies an analysis of change patterns for each model. The tested algorithm combined 

with GIS-based spatial analysis could represent a promising tool in land cover mapping and change 

analysis, as it allows to obtain multi-temporal suitability maps that better reflect the uncertainty 

proper of natural ecosystems than the division into discrete classes proper of crisp maps. 

Our results indicate that MaxEnt, which typically has been used for estimating habitat suitability for 

plant and animal species in natural areas, can also provides reasonable estimates of land cover 

classes distribution and land use change detection, as can be seen from the AUC values obtained for 

all the models (Table 3).  

Moreover, it is notable that the performed MaxEnt models had strong predictive performance even 

if restricted to spectral reflectance as explanatory variables, showing relatively clear patterns of 

difference between 2001 and 1976 probability of occurrence scores (see Figure 2). 

In fact, the probability of occurrence for the nine land cover classes is clearly not randomly 

distributed, with regions of high values being found in correspondence of lowland or hilly areas for 

Croplands, Artificial areas, Orchards and Vineyards and in correspondence of Mountain areas, for 

forest classes and grasslands. As for the performance of the models, in terms of variability of 

suitability scores as well as AUC scores, this is dependent upon the land cover class take into exam. 

How close the AUC is to its potential maximum, can ultimately only be assessed if we consider 

how homogeneous and specialized are the environmental characteristics of the areas occupied by 

each land cover class, because a more heterogeneous and inclusive class (i.e a wider niche if we 
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consider species or habitats) as it is defined in the classification process, corresponds generally with 

a lower AUC value (Phillips, Anderson, & Schapire, 2006; Elith et al., 2011). In fact higher values 

of AUC are related to Coniferous forests, Broadleaved forests and Grassland and pastures, which 

represent the classes that occupy the better defined niche in the study area. While, for more 

heterogeneous classes, AUC values are lower due to partial overlap of occupied environmental 

niche and of the spectral unmixing that characterizes the Landsat images (Van der Meer, 1995).  

Focusing on the emerged change patterns, the data we obtained through this work are consistent 

with the literature, which highlights how the abandonment of traditional primary activities, a 

process due to various environmental and economic consequences, played a significant role  in  land 

cover changes in European mountains (MacDonald et al., 2000; Pelorosso, Leone, & Boccia, 2009; 

Kolecka et al., 2015; Orlandi et al., 2016). In particular, a process to be focused, for its profound 

implications in terms of natural resource management and biodiversity conservation, is the rapid 

expansion of forests and scrublands in abandoned agricultural areas, with the consequent variation 

in plant species composition, richness, and vegetation biomass (Amici et al., 2013; Dupouey, 

Dambrine, Laffite & Moares, 2002; Maccherini et al., 2013). This increase is due to ecological 

succession in abandoned lands, a non linear process that generally begins with the replacement of 

annual plants by perennial plants to reach a closed canopy by woody species (Bartha, Meiners, 

Pickett & Cadenasso, 2003; van Breugel, Bongers & Martínez-Ramos, 2007; Walther, Petersen & 

Pott, 2002). 

Our results revealed a substantial functional reorganization of the land mosaic in terms of land use 

in the time span considered, that confirms what. The detected changes are connected with an 

increase in artificial surfaces (mostly residential buildings, farm sheds and roads) at the expense of 

arable land and vineyards and a significant growth in forest areas at the expense of agriculture 

areas, grasslands and baresoil, overall considering grasslands at higher elevations. In particular it 

should be reported a substantial increase of broadleaves in conjunction with situations of high 

gradients (10°-40°) and altitude between 600 and 1500 m.s.l.m. This seems to be confirmed by  the 
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forest management that has emerged in last decades, for which the cutting areas are selected from 

among the most accessible and more easily workable areas (Plieninger & Schaar, 2008) and a 

contemporary abandonment of pastures in the most inaccessible areas, as part of a more general 

trend of expansion of forest areas in mountainous and hilly areas due to the expansion of 

industrialized agriculture and the abandonment of traditional agricultural areas (Pelorosso, Leone, 

& Boccia, 2009; Geri, Amici, & Rocchini, 2010; Orlandi et al., 2016). The coniferous forests 

showed a similar trend, with the only difference that the increase in surface area took place mainly 

at the expense of grasslands.  The expansion of coniferous forests  is probably regulated by the 

same hypothesized drivers for deciduous forests, only translated in the altitudinal direction 

(between 1000 and 2000 m a.s.l., see Figure 4), following the ecological requirements of the alpine 

conifers, together with small scale microclimate changes (Pauli, Gottfried, Reiter, Klettner, & 

Grabherr, 2007).  A decrease in terms of surface in the last decades was found for grassland areas 

and other open areas that, along with patches of sparse or dense forests are part of the traditional 

landscape mosaic, can be mainly found in the subalpine and alpine belt (Garbarino, Lingua, Subira, 

& Motta, 2011; Garbarino, Sibona, & Lingua, 2014).  The forest patches can be considered as the 

most dynamic elements of the traditional heterogeneous alpine landscapes (Höchtl, Lehringer, & 

Konold, 2005), while the surfaces of open areas tend to reduce due to trees encroaching on the 

abandoned land (Cousins, Lavorel, & Davies, 2003; Dullinger, Dirnböck, Greimler, & Grabherr, 

2003). This secondary succession process is particularly evident in the Italian Alps (Motta & 

Garbarino, 2003; Höchtl, Lehringer, & Konold, 2005; Garbarino & Pividori, 2006) where enclosed 

herbaceous patches, traditionally grazed during the summer are at risk of disappearing due to the 

abandonment of traditional practices (Grossi, Chevanier, Delcros, & Brun, 1995) and the 

subsequent secondary succession processes that are particularly fast and abrupt due to favourable 

climate and soil fertility. This process has mainly affected patches located at altitudes between 1000 

and 2000 meters and steep slopes (10 to 40), where the strongest have been the effects of a more 
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general reorganization of agricultural spaces due to the industrialization of agricultural practices, 

which favoured the abandonment of traditional practices and of less productive terrains. 

In this context, we detected a significant increase of vineyards surfaces in the valley or in hilly areas 

with low slope (0°-5° ), associated with the potential increase of wine market production in the Alps 

regions (Odorici & Corrado, 2004). 

 

5. Conclusions 

 This work proposed a new remote sensed approach to perform multi-temporal land cover 

classification of large areas, using the maximum entropy approach. Our findings suggest that 

MaxEnt, a machine learning algorithm traditionally used in species/habitat distribution modelling, 

can represent a useful and reliable approach for identifying multi-temporal landscape dynamics, a 

result that should encourage conservationists to add distribution modelling to their toolbox. 

Moreover, the data obtained here are consistent with those obtained in previous work for alpine 

areas (see e.g. Chemini & Rizzoli, 2003 Falcucci, Maiorano, & Boitani, 2007; Tasser, Walde, 

Tappeiner, Teutsch, & Noggler, 2007; Rutherford, Bebi, Edwards, & Zimmermann, 2008; Niedrist, 

Tasser, Lüth, Dalla Via, & Tappeiner, 2009; Zimmermann, Tasser, Leitinger, & Tappeiner, 2010; 

Monteiro, Fava, Hiltbrunner, Della Marianna, & Bocchi, 2011), confirming that reasonable models 

of land cover distribution and change for remotely sensed derived presence-only data represent a 

challenging outlook.   

The development of a methodology that, in the absence of field data, allows to obtain reliable data 

on land use change dynamics, is of extreme importance for those institutions engaged with 

landscape planning and management. In particular, in a context of climate change and changes, 

producing multi-temporal data in a systematic and cost-effective way is vital to: i) explore potential 

ecological patterns driving ecological processes and ii) allow a more efficient monitoring of land 

resources. 
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Tables 

 

Table 1. Description of land cover classes with relative Corine Land Cover code. 

Class 
Corine Land cover  

(Level III) 
Description 

Atificial areas 

(ART) 
111, 112, 121, 122, 124 

Areas mainly occupied by urban 

fabric 

and/or industrial, commercial and 

transport units. 

Boadleaved forests 

(BRO) 
311 

Vegetation formation composed 

principally of trees, including shrub 

and bush understoreys, where broad-

leaved species predominate 

 

Coniferous forests 

(CON) 
312 

Vegetation formation composed 

principaly of trees, including shrub 

and bush understoreys, where 

coniferous species predominate. 

Croplands 

(CRO) 
211, 212, 241, 242 

Areas of permanent or annual crops 

which are permanently or not 

irrigated. 

Grasslands and pastures 

(GRA) 
231, 321 

Low productivity grassland and 

natural or semi-natural meadows, 

which are permanently used for 

fodder production. 
Orchards 

(ORC) 
222 

Parcels planted with fruit trees, in 

particular orchards of apples. 

Rock and bare soil 

(ROC) 
332, 333 

Cliffs, rock outcrops, incuding active 

erosion, rocks, sparsely vegetated 

and unstable areas of stones, 

boulders, or rubble on steep scope. 
Vineyards 

(VIN) 
221 Areas planted with vines. 

Water bodies 

(WAT) 
511, 512 

Natural or artificial stretches of 

water, and natural or artificial 

water-courses. 
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Table 2. Relative contribution (%) of each band to each land cover model. The following table 

gives estimates of relative contributions of the environmental variables to the MaxEnt model. To 

determine the first estimate, in each iteration of the training algorithm, the increase in regularized 

gain is added to the contribution of the corresponding variable, or subtracted from it if the change to 

the absolute value of lambda is negative. For land cover classes abbreviation see table1.  

 ART BRO CON CRO GRA ORC ROC VIN WAT 

1976 

(MSS) 

Band1 
0.5-0.6 um 

(Green) 

0.4 11.1 0.4 6 51.1 11.4 31.3 7 35.3 

 
Band2 

0.6-0.7um 

(Red) 

13.2 26.9 39.9 35.8 20 14.8 22.7 85.4 2.3 

 

Band3 
0.7-0.8um  

(Near 

Infrared) 

0.8 27.1 0.4 15.7 0 32.8 25.1 3 0.8 

 

Band4 
0.8-1.1um  

(Near 

Infrared) 

85.6 34.9 59.3 42.5 28.9 41 20.9 4.6 61.6 

2001 

(ETM+) 

Band1 
0.45-0.52 

um (Blue-

Green) 

2.8 0.4 0.2 20.1 5.7 7.2 26.4 10.4 0 

 
Band2 

0.53-0.61 

um (Green) 

6.2 0.3 0 0.7 3.1 5.5 0.3 0.5 0 

 
Band3 

0.63-0.69 

um (Red) 

18.3 0.6 22.8 1 3.8 0.4 30.6 6.3 1.7 

 

Band4 
0.78-0.90 

um (Near 

Infrared) 

61.7 11 31.7 0.8 35.7 11.8 24.4 3.1 21.2 

 

Band5 
1.55-1.75 

um (Mid 

Infrared) 

5.8 85.1 5.7 74 25.8 24.3 12.9 53.6 42.9 

 

Band7 
2.09-2.35 

um (Mid 

Infrared) 

5.2 2.6 39.6 3.4 25.9 51.2 5.4 26.1 73.2 
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 Table 3. The average training AUC and the standard deviation values for each model. 

Land use Class AUC SD 

 2001 1976 2001 1976 

Artificial areas (ART) 0.930 0.940 0.007 0.004 

Broadleaved forests (BRO) 0.981 0.980 0.005 0.006 

Coniferous forests (CON) 0.989 0.986 0.004 0.005 

Croplands (CRO) 0.931 0.926 0.008 0.007 

Grasslands and Pastures 

(GRA) 
0.984 0.978 0.005 0.011 

Orchards (ORC) 0.972 0.965 0.009 0.008 

Rock and bare soil (ROC) 0.944 0.940 0.006 0.017 

Vineyards (VIN) 0.954 0.959 0.017 0.019 

Water Bodies (WAT) 0.993 0.984 0.003 0.007 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Table 4. Contingency matrix. It represents the average values of probability of belongings to 1976 

classes for each of 2001 classes. 

 

 1976 

 ART BRO CON CRO GRA ORC ROC VIN WAT 

2001 ART 0.26 0.01< 0.01< 0.29 0.01< 0.05 0.01 0.28 0.06 

 BRO 0.01< 0.30 0.01 0.18 0.13 0.05 0.12 0.01 0.01< 

 CON 0.01< 0.01< 0.35 0.12 0.17 0.08 0.12 0.01 0.01< 

 CRO 0.07 0.01< 0.01< 0.38 0.01< 0.11 0.01< 0.18 0.01 

 GRA 0.01< 0.01 0.01 0.01< 0.42 0.01< 0.13 0.01< 0.01< 

 ORC 0.07 0.04 0.01< 0.21 0.01< 0.33 0.06 0.11 0.05 

 ROC 0.01< 0.01< 0.01< 0.03 0.13 0.01< 0.38 0.01< 0.11 

 VIN 0.01< 0.01< 0.01< 0.18 0.01< 0.18 0.09 0.41 0.04 

 WAT 0.01< 0.01< 0.01< 0.1 0.01< 0.01< 0.02 0.01< 0.48 
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Figures caption 

 

Figure 1. Study area.
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Figure 2. Difference maps (2011-1976) for each land cover class. The areas characterized by a 

significant increase of probability of occurrence values are represented trough dark grey tones of 

colour. 
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Figure 3. Frequency distribution curves relating the values of loss (<0), gain(>0) or maintenance 

(=0) for each land use class to its frequency of occurrence. 
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Figure 4. 3D-density plots between land use classes and Altitude. 
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Figure 5. 3D-density plots between land use classes and Slope. 
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Highlights: 

- Remote sensing is an essential technology to study land cover change over large areas 

- MaxEnt algorithm allow to determine spatial distributions from incomplete data 

-  MaxEnt-based classification and detection of land cover changes is proposed 

-  MaxEnt may represent a useful tool for identifying multi-temporal landscape dynamics 

- Results highlight the reliability of proposed method for land resources monitoring 

ACCEPTED MANUSCRIPT


